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Abstract

A water hazard is one of the greatest dangers in mining and tunneling operations and the issue of predicting water hazard
zones has been extensively discussed in the literature. However, the currently used methods require a highly detailed
understanding of hydrogeological conditions or have major limitations and often produce unreliable results. This paper
describes the use of hydrogeochemical anomalies as an indicator of impending mine water hazard zones. The proposed
method uses the concentration of Cl ions in water extracts from Permian rock samples collected from the face of the
mine workings. The concentration of Cl ions in the water extracts strongly correlated with the concentration of this ion in
the pore solutions extracted from the same rock samples. Additionally, the concentration of ClI ions in the pore solutions
exhibited a very strong correlation with the concentration from the Permian leaks. Thus, the decreasing concentration of
Cl ions in the water extracts was deemed a reliable signal of an approaching water hazard zone. In the hydrogeological
conditions present in the Olkusz-Pomorzany mine, this method enabled the detection of the moment when a water hazard

zone was ~200-250 m away.
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Introduction

A water hazard is defined as the possibility of water or a
mixture of water and loose rock material entering mine
workings, creating a danger to the health and life of workers
or the continuity of mine operations (Rogoz 2004). Next to
rock mass failures and gas explosions, these are the most
dangerous events in underground mines. Inrush of water
into underground excavations, both in mines and tunnels
constructed using mining methods, often results in the loss
of many lives (Kong et al. 2022; Sun et al. 2015; Tajdu$
2022; Zhang et al. 2020). Prevention of water hazards pri-
marily involves reliable prediction of their location and
taking appropriate actions to minimise the risk. The loca-
tion of a water inrush, however, is exceedingly challeng-
ing to predict. First of all, the complicated hydrogeological
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conditions near the mine workings is typically too poorly
recognized to make predictions sufficiently reliable (Wang
et al. 2022). Challenges related to predicting potential water
inrush zones in mining excavations are extensively dis-
cussed in the literature (e.g. Lietal. 2017, 2023a; Liu et al.
2011; Ma et al. 2022a; Rogoz 2004; Xie et al. 2023; Zhang
2005).

Hydrochemical methods can be used to forecast the
inrush of water or quicksand into mine workings. Descrip-
tions of such cases are rare in the hydrogeological literature,
likely because the use of these methods requires a marked
difference in the chemical composition of water at the source
of the hazard compared to the surroundings of the mining
excavations. An example is the use of this method for pre-
dicting zones of possible water inrushes in mine workings
from the overburden (Motyka et al. 1972), or for predicting
sudden increases in water and mud inflows into mine work-
ings (Pirc and Uhan 1991).

In this study, the first case of utilizing hydrochemical
zonation to predict potential water inflows into excavations
accessing zinc and lead ore deposits in the Olkusz-Pomor-
zany mine in the Olkusz region (SW Poland) is discussed.
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The mine was closed at the end of 2021 due to the depletion
of ore resources.

Conventional Approaches to Water Inrush
Risks

Various methods are used in mining to predict the locations
of water inrush zones. The fundamental approach involves
analyzing the geological structure of the rock mass, with
particular emphasis on the identification of fault zones, from
which water or quicksand inrushes into mining excavations
may occur (e.g. d’Obyrn et al. 2021). In the case of carbon-
ate rocks, where karst systems may be developed, analysis
of the geological structure as a whole is insufficient. Recon-
naissance on a local scale (in each individual pit) is then
necessary. For both fault zones and karst systems, common
practice involves advance boreholes of up to several tens
of meters in length. These drillings are carried out along
the excavation axis and are occasionally supplemented with
additional boreholes, drilled from the mine working face,
spanning a few meters in length.

To identify water hazard zones, geophysical methods
such as geoelectric and seismic methods are employed.
The transient electromagnetic method (TDEM) is also used
(Han et al. 2011). These methods can help locate permeable
fault zones and areas with an increased density of fractures
and karst channels. In certain cases, tracer methods (Vin-
cenzi et al. 2008) can assist in identifying sources of water
inrush; this has proven to be effective under certain condi-
tions (Chen et al. 2019; Luo et al. 2022).

A separate group, proposed mainly by Chinese hydroge-
ologists, consists of calculation methods, GIS techniques,
and simulation methods. Calculation methods include
empirical equations (Cao et al. 2022; Dong et al. 2021; Li
et al. 2023b; Shi et al. 2014; Wang et al. 2016; Zhao et al.
2023a; Zhang 2005), statistical methods of trend analysis
and extrapolation (Hingley and Nicolas 2006), and math-
ematical models based on linear and nonlinear equations of
filtration and geomechanics (Huang 2016; Hou et al. 2020;
Hu et al. 2019; Kang et al. 2019; Li et al. 2017; Liang et al.
2023; Peng et al. 2020; Wang et al. 2012; Xiao et al. 2010;
Xiang et al. 2011; Yin et al. 2022; Zhang and Zhong 2012).
Empirical formulas and statistical methods tend to be less
reliable in complex groundwater flow conditions. The use
of mathematical models requires the acquisition of a large
amount of data regarding geological structure and hydro-
geological conditions, which greatly limits the use of these
methods. A large volume of input data is also essential when
employing discriminant analysis methods (Dong and Zhang
2023; Xue et al. 2023). Simulation methods such as similar
materials simulation experiments (Sui et al. 2014; Wang et

al. 2020; Zhang et al. 2018), mechanical similarity experi-
ments (Pang et al. 2014), or numerical simulations (Ma et
al. 2022b; Wu et al. 2015) are also used. However, these
methods often require simplifications of the hydrogeologi-
cal conditions of the study area, which affects the quality
and certainty of the developed predictions.

In the literature, researchers have also attempted to use
the analytic hierarchy process (AHP) expert method, which
involves a group of experts assigning subjective numerical
weights to selected factors that affect the formation of water
hazards in the mine workings (Song et al. 2021; Sun et al.
2014; Zhao et al. 2023b). The results thus obtained makes it
possible to assess the degree of danger from the possibility
of water intrusion into the workings. The results obtained
in this manner enables an assessment of the threat level of
a potential water inrush. However, a major drawback of this
method is the subjective nature of the assessment, which,
depending on the choice of experts, can vary within broad
limits.

There have also been attempts to use GIS methods to
locate water hazard zones (Dai et al. 2018; Liu et al. 2021,
Wang et al. 2023; Wen et al. 2010; Wu et al. 2011). When
combined with neural networks, they give satisfactory pre-
dictive results, but they are limited by the need to consider
numerous factors and a complicated modeling process.

Rapid increases in water inflows into mines or their
operational fields due to heavy rainfall are also considered
within the category of a water hazard (Gao et al. 2018). To
forecast such threats, rainfall infiltration models are used,
with an example being the rainfall-runoff model (Kang et
al. 2019; Luo et al. 2022). However, this model requires
precise determination of the catchment area boundaries and
parameters, making it less commonly applied in practice.

Hydrogeological and Hydrogeochemical
Setting

The Olkusz zinc and lead ore mining region is part of the
Silesian-Krakoéw monocline, consisting of Mesozoic forma-
tions that are slightly inclined in the NE direction. Paleozoic
rocks, including Devonian, Carboniferous, and Permian,
underlie the Mesozoic sediments, which are covered by
Quaternary sediments. There are four identified aquifers in
this area: Quaternary, Jurassic, Triassic, and Paleozoic (Car-
boniferous-Devonian) (Wilk and Motyka 1977).

The Quaternary aquifer primarily consists of medium-
grained fluvioglacial sands with interbeds of gravel and
weathered rock debris. It locally contains silts and clays.
The thickness of the Quaternary water-bearing formations
depends on the shape of the older bedrock and can reach
several tens of meters in the axial parts of buried river
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valleys formed in the pre-glacial period (Motyka 1988).
The geometric mean value of the permeability coefficient,
determined from the results of pumping tests, is 2.5x 10~*
m/s (Motyka and Wilk 1976).

Jurassic formations are found in the northern and east-
ern parts of the Olkusz region (Fig. 1). The water-bearing
strata are composed of Upper Jurassic limestones, which
form the aquifer level of the Malm. These limestones are
underlain by poorly permeable marls of the lower part of the
Malm and the upper Dogger. Locally, marlstones and sand-
stones of the Middle Jurassic form a separate aquifer level
(Rozycki 1953; Tokarski 1958). Jurassic limestones serve as
a fractured-karst type aquifer with a thickness up to =~ 200 m.
The geometric mean value of the permeability coefficient of
Jurassic limestones, determined from the results of pumping
tests, is 1.5 10™> m/s (Motyka and Wilk 1976).

The Triassic aquifer in the Olkusz zinc and lead ore min-
ing region is lithologically bipartite. In the lower section, it
consists of sands and sandstones from the Middle and Lower
Bunter Sandstone, often interbedded with claystones. In the
upper part, it is composed of carbonate rocks from the Upper
Bunter Sandstone (Rhaetian) and Muschelkalk. The Lower
Bunter Sandstone formations occur as patches with a thick-
ness of up to several meters, and thus have a limited effect
on groundwater flow conditions. The dolomites and lime-
stones of the Upper Bunter Sandstone (Rhaetian) and Mus-
chelkalk constitute a fractured-karst-porous groundwater
reservoir (Motyka 1998). Its total thickness reaches 130 m,
and the geometric mean value of the hydraulic conductiv-
ity, calculated from the results of pumping tests, is equal to
6.5% 107> m/s (Motyka and Wilk 1976). The dolomites of
the Middle Triassic serve as the host rocks for lead and zinc

ore (ore-bearing dolomite). The presence of karst void sys-
tems in them has been the cause of localized water inrushes
with a maximum discharge of ~ 1-1.5 m*/s (Fig. 2).

The Paleozoic aquifer is composed of Lower Carbonif-
erous limestones and Devonian dolomites and limestones
interbedded with marls. The hydrogeological properties of
this aquifer are poorly recognized. Only two pumping tests
have been conducted in the carbonate rocks of the Paleo-
zoic, yielding permeability coefficient values of 7.6x 107°
m/s and 7.0x 1073 m/s. In several boreholes, the presence
of voids, likely karstic, ranging from 0.6 to 4.9 m in height,
and karstic forms filled with fine-grained, laminated sedi-
ments, has been observed. Based on the current hydrogeo-
logical investigation results, the Paleozoic carbonate rocks
are classified as a fractured-karst aquifer.

Predominantly in the area of the Olkusz zinc-lead ore
mining region, the Triassic aquifer is underlain by Perm-
ian conglomerates. It is a typical Permian molasse, devel-
oped mainly as a monotonous series of poorly-sorted, red
terrestrial conglomerates (Fig. 2), with insets of sandstones
and mudstones. Permian deposits, with a thickness of up to
300 m, constitute a low-resource porous-fractured aquifer.
On a regional scale, the Permian molasse has been inter-
preted to be an aquitard sandwiched between the overlying
Triassic aquifer and the underlying Paleozoic aquifer. How-
ever, during mining operations in these rocks, zones with
locally increased permeability (usually fracture systems)
were often encountered, with water outflows ranging from
tenths of L/min to several hundred L/min. In the Permian
conglomerates, six pumping tests were conducted in two
monitoring wells, and 26 slug tests were performed in 12
drilling wells. The permeability coefficient value of Permian

Fig. 1 Geological map of the Olkusz area
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Fig. 2 Water inrush from ore bearing dolomites
ca. 1.0 m%/s (Photo by J. Lesniak)

Fig. 3 Groundwater flow scheme in the Olkusz
area under mining drainage conditions (based on
Adamczyk and Motyka 2000)
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rocks, determined from the results of these tests, fell within
a wide range of values, i.e. from 2.5x 1073 t0 5.4 x 107> m/s
(Adamczyk et al. 1978).

Groundwater flow conditions in the Olkusz zinc and lead
ore mining region are highly complex due to the diverse
types of hydraulic connections between various aquifers
(Fig. 3).

The primary hydraulic contacts of sedimentary-facial
and sedimentary-transgressive types, as well as secondary
contacts of erosional and tectonic types, have the greatest
influence on water exchange between various aquifers. The
Triassic aquifer, containing zinc and lead ores that were
mined in the Olkusz region until 2020, is recharged through
such hydraulic connections.

From the perspective of the issues discussed in this
study, the chemical composition of groundwater in Trias-
sic and Permian formations is of great importance. Natural

groundwater in carbonate Triassic formations in the Olkusz
region have total dissolved solids (TDS) concentrations
ranging from 100 to 590 mg/L, averaging about 280 mg/L
(Rézkowska et al. 1975). They are mostly of the Ca-Mg-
HCO; or Ca-Mg-HCO;-SO, type. According to Adamczyk
and Wilk (1976), the average TDS of natural groundwater
in carbonate Triassic rocks in the Olkusz region was about
340 mg/L.

Analyses of the chemical composition of natural waters
from inflows into the mine workings within carbonate Trias-
sic rocks in the Olkusz-Pomorzany mine have confirmed the
results presented in the previously cited works. The TDS of
these waters is most often 200400 mg/L (Table 1) and they
are, as localized in the environment of dolomites and lime-
stones hosting zinc and lead ores, most commonly of the
Ca-Mg-HCO; type and occasionally of the Ca-Mg-HCO;-
SO, type (Fig. 4).
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Table 1 Aggregate results of Triassic water analyses

Parameter Unit Minimum Maximum Mean Median Std. dev. Number of observations
Ca mg/L 22.04 83.20 52.69 54.10 12.48 63
Mg 10.10 39.64 20.24 17.15 8.42 63
Na+K! 0.23 23.91 8.56 7.13 6.27 62
Cl 0.51 48.86 10.14 8.86 6.73 63
SO, 11.93 74.27 43.19 43.20 13.92 63
HCO; 152.55 283.74 213.68 216.62 25.17 63
TDS 244.00 409.00 348.38 347.00 34.39 63
pH - 7.00 8.35 7.70 7.65 0.41 21

IThe analyses date back to the 1960s and 1970s, when Na and K ion content was determined as a combined value. Applies also to Table 2

Fig. 4 Piper diagram for Triassic and Permian S04 +Cl
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Table 2 Aggregate results of Permian water analyses
Parameter’ Unit Minimum Maximum Mean Median Std. dev. Number of observations
Ca mg/L 4.48 1,483.00 154.50 56.11 255.84 60
Mg 10.21 538.92 85.35 41.34 113.51 60
Na+K 13.00 6,349.38 883.53 407.15 1,286.87 60
Cl 15.96 12,232.66 1,347.25 381.19 2,325.13 60
SO, 39.09 2,750.00 537.10 314.78 605.86 60
HCO; 6.10 366.10 238.18 250.18 67.12 60
TDS 369.34 21,669.80 3,250.07 1,665.42 4,408.57 60

IpH values were not determined for Permian water samples

The hydrochemical type of Permian waters changed  and Ca-Mg-HCO;. A discernible pattern emerged, wherein
depending on the TDS (Table 2). Fresh waters, i.e. with  an increase in TDS corresponded to a rise in the proportion
TDS below 1000 mg/L, were multi-ionic, with different  of magnesium and sodium among cations, at the expense
combinations of proportions of major ions. Within this  of calcium. Simultaneously, among anions, there was an
group of waters, the following hydrochemical types were  elevation in the proportion of sulfates and chlorides, at the
identified: Ca-Mg-Na-CI-SO,-HCO;, Na-Mg-Ca-CI-SO,-  expense of bicarbonates.

HCO;, Na-Ca-Mg-HCO,;-Cl-SO,, Na-Mg-Ca-HCO;-Cl,
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In Permian water samples with a TDS ranging from 1 to
10 g/L, sodium predominated among cations, while at lower
TDS, magnesium, and calcium were present at higher concen-
trations. Among anions, bicarbonates dominated in waters with
TDS of about 1 g/L, and as TDS increased, sulphates became
more prevalent, with chlorides exhibiting the highest mmol/L
percentage in waters with a TDS of about 10 g/L. Consequently,
the majority of waters in this TDS group exhibited a Na-SO,-
Cl, Na-CI-SO,, and less frequently Na-SO, type. In the group
of saline waters with a TDS > 10 g/L, sodium and chloride ions
dominated. In waters with a TDS slightly> 10 g/L, elevated
concentrations of sulphate ions were observed, and they were
of the Na-Cl-SO, type. Waters with higher TDS were charac-
terized as a Na-Cl type. The proportions of concentrations of
individual ions in Permian conglomerate waters under natural
conditions varied depending on their TDS. For cations, a dis-
tinct trend was evident with the shift from Ca, Mg — Na, while
for anions, two less pronounced trends were observed: HCO,
— Cland Cl — SO, (Fig. 4).

Methods and Method Description

A typical method for identifying water hazard zones in Poland
has been the drilling of advance boreholes parallel to the direc-
tion of mining operations. According to current Polish safety
regulations, they must advance the front of the excavation by at
least 50 m. Within these boreholes, measurements are taken of

Fig. 5 Relationship of C1™ concentration to TDS
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water flow rates, if such flows occur, as well as the pressure of
the outflowing water. Drilling such boreholes poses a logistical
challenge as it needs to be synchronized with the pace of min-
ing progress. In practice, it may be necessary to temporarily
halt mine workings to allow boreholes to advance the face of
the gallery by the required 50 m. In addition, drilling advance
boreholes is also expensive. The hydrochemical method for
predicting water inrush zones is practical and much more cost-
effective than drilling. However, certain hydrogeological con-
ditions must be met to allow its application.

The hydrochemical method can be applied under conditions
characterized by a distinct difference in concentrations of eas-
ily measurable components in the water within the aquifer pos-
ing the risk of water inrush and in the formations in which the
mining works are carried out. This condition was met in the
described case of the main excavation accessing the zinc and
lead ore deposit (Main Drift) at the Olkusz-Pomorzany mine,
particularly for C1™, which are easily measurable conservative
ions. In the poorly permeable Permian conglomerates, mineral-
ized waters were present at the Main Drift level, while in the
adjacent carbonate Triassic rocks, freshwater was found. The
waters of the Triassic aquifer, from which water inrush into the
Main Drift could occur, had low CI™ concentrations (Table 1).
In the Permian conglomerates water outflows, the Cl™ con-
centration exhibited a wide range, from 16 to 12,200 mg/L
(Table 2). This ion’s concentration strongly correlated with
TDS (Fig. 5), making it a suitable TDS indicator for the dis-
cussed hydrochemical method.
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The discussed hydrochemical method was developed
based on comprehensive studies carried out in workings
located in Permian conglomerates. These studies involved
analyses of the chemical composition of water leaks, analy-
ses of C1™ concentrations in pore solutions extracted using a
hydraulic press from Permian rock samples collected as the
face advanced, and analyses of C1™ concentrations in water
extracts at a liquid/solid ratio (L/S) of 5:1 from rock sam-
ples. One part of the samples underwent hydraulic pressing,
while the other part was used to prepare a water extract.
The moisture content of each rock sample was determined
before preparing the water extract. The concentration of C1~
in leaks, pore solutions, and water extracts was determined
using the argentometric titration method. Considering the
moisture weight (M,,) of the sample and the L/S ratio and
assuming that the entire Cl ion content was present in the
rock in the form of an aqueous solution in the pore space,
the CI, concentration (mg/100 g) from the eluate was con-
verted to the Cl; concentration in the pore solution, accord-
ing to the formula:

Cle

Cl, =10
r M,

(1

The concentration of CI™ in water samples collected from
leaks in excavations drilled in Permian shales increased
with depth, measured from their roof, and clearly aligned

Fig.6 Changes in Cl~ concentration in water
from leaks in the Main Drift with depth, mea- 0

along two distinct trends. One of these trends represented
a set of leaks where the concentration of C1™ increased fol-
lowing the expected pattern of TDS growth with depth. The
other trend included a collection of leaks with anomalously
low concentrations of the discussed ion, showing slight
variations with depth (Fig. 6).

Leaks with anomalously low concentrations of ClI ions
occurred near faults or close to the roof of Permian forma-
tions. They also exhibited much higher outflow rates than
those aligning along the normal trend of hydrochemical
zonation. Therefore, they indicated areas of potential water
hazard for excavations located in Permian rocks. These
patterns formed the basis for the proposed method of iden-
tifying such zones, with the assumption that it should be
straightforward and practical in application. These condi-
tions were met by the aforementioned method using water
extracts. The validity of applying this method was verified
in two steps.

In the first stage, the relationship between the CI~ con-
centration in pore solutions and the concentration of these
ions in water leaks was examined, considering only rock
samples taken to obtain pore solutions in the vicinity of indi-
vidual leaks. The CI™ concentration values in pore solutions
and leaks demonstrated an almost deterministic relationship
(Fig. 7A). In the second stage, the correlation between the
CI™ concentration in water extracts and the concentration of
these ions in pore solutions was checked, revealing a very
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strong relationship as well (Fig. 7B). Thus, the C1™ concen-
tration in samples of Permian conglomerates collected dur-
ing mining works could be applied to predict water hazard
zones.

The discussed method for predicting water hazard zones
was tested on the initial section of the Main Drift. A vis-
ible decrease in the CI™ concentration in pore solutions
and water extracts was observed in the areas of fractures
accompanying faults, even with minimal throw (Fig. 8). At
the same time, these zones hosted water leaks with higher
outflow rates and lower TDS. A reduction in Cl~ concentra-
tion was also associated with the drift approaching the roof
of Permian formations due to the inclination of the strata.
This pattern was confirmed in other excavations carried out
in Permian rocks (Fig. 9).
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The conducted research has revealed favorable condi-
tions for the application of the proposed hydrochemical
method in the Olkusz-Pomorzany mine to detect faults and
fracture zones that pose a water hazard to mining activities
carried out in Permian rocks. A decrease in CI~ concentra-
tions in pore solutions and water extracts from these rocks,
which is indicative of a decrease in TDS value due to the
influence of freshwater from the overlying strata, signals
the approach of the excavation to a potential water inrush
zone. This signal appears~200-250 m ahead of the water
hazard zone (Fig. 8). This range is notably greater than that
achieved with costly advance boreholes, which had a length
of ~ 100 m.

The assessment of the impact of freshwaters on waters
with higher TDS could also benefit from EC measurements.
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Fig. 9 TDS diagrams for water from leaks from
the Permian formations at the Pomorzany and
Olkusz mines
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It can be presumed that the correlation between TDS and
EC would be as significant as with chlorides. However, dur-
ing the measurements conducted at the Olkusz-Pomorzany
mine in the 1970s, conductivity meters were not available
in Poland.

Conclusions

Hydrochemical methods for predicting water hazard zones
in mine workings gives promising results, but a crucial
requirement for their application is a noticeable difference
in the chemical composition of water at the source of the
hazard and in the surrounding vicinity of the mine workings.
The method described in this paper, which was developed
during mining operations in the Permian conglomerates at
the Olkusz-Pomorzany mine, fulfills these conditions. The
Permian conglomerates have low permeability and water
outflows in the workings located within them occur in frac-
ture zones, which typically surround faults. Above them,
there are Triassic carbonate rocks, which form a fracture-
karst groundwater reservoir. Water inrush into excavations
in the Permian rocks through the aforementioned fracture
zones was possible from this aquifer.

The TDS of the Triassic aquifer ranged from 200 to
400 mg/L, while in Permian rocks, it ranged from 370 to
21,700 mg/L. Notably, in water leaks with decreasing TDS,
there was an increasing proportion of water from Triassic
formations, indicating their association with water hazard
zones. A useful indicator of the excavation’s proximity to the
water hazard zone was the conservative chloride ion, which
exhibited a strong correlation with TDS. Additionally, the

@ Springer

determination of this ion using the argentometric titration
method is straightforward and does not require complex
equipment. In the waters of the Triassic aquifer, the C1™ con-
centration ranged from 0.5 to 49 mg/L, while in Permian
rocks, it ranged from 16 to 12,200 mg/L.

It was assumed that the proposed hydrochemical method
for detecting water hazard zones should be simple and effec-
tive. To achieve this, the concentration of Cl ions in water
extracts from samples of Permian conglomerates was used,
which were collected from the face of the Main Drift. The
concentration of Cl ions in water extracts showed a strong
correlation with the concentration of this ion in pore solu-
tions obtained from the same rock samples as the water
extracts. The correlation of CI™ concentration in pore solu-
tions and in water leaks from Permian rocks was also very
strong. Therefore, the decrease in Cl™ concentrations in
water extracts was considered a reliable signal of approach-
ing the water hazard zone. This signal appeared= 200-
250 m ahead of the hazard zone, much earlier than in the
case of horizontal advance boreholes ahead of the excava-
tion, typically by about 100 m.

The proposed method yields good results in conditions
where a marked difference in water chemistry is observed
between the rocks where mining operations are conducted
and those from which water may inrush into the mine work-
ings. In the case of the Olkusz-Pomorzany mine, this con-
trast was evident between the Permian waters with high
TDS and CI™ content and the Triassic waters with low TDS
and low CI™ content. The influence of freshwater became
apparent as the workings approached zones of fractures and
faults, indicating areas of potential water hazard.
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Currently, in mines prone to sudden water inrushes
into workings, EC measurements could also be conducted
at leaks. This would enable EC changes to be monitored,
and in the event of such occurrences, prompt actions could
be taken to investigate the phenomenon, especially when
advance boreholes have not revealed any anomalies.

This method produced very promising results, and we
suggest that it be tested in other mines and also during tun-
nel constructions. It represents a useful, simple, and low
cost supplement to other methods such as cover drilling.
The principle behind this method is to forgo pre-drilling in
safe zones, where pore solutions and water extracts have
high chloride concentrations. However, at sites where a
potential water hazard is indicated, advance boreholes are
mandatory. This approach allows for major cost savings by
avoiding pre-drilling in safe zones while ensuring proactive
measures were taken in areas of potential risk.
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supplementary material available at https://doi.org/10.1007/s10230-
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